Rexdf

The devil is in the Details.

Codeforces 175 A

| Comments

A. Slightly Decreasing Permutations

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Permutation p is an ordered set of integers p1,  p2,  …,  p__n, consisting of n distinct positive integers, each of them doesn’t exceed n. We’ll denote the i-th element of permutation p as p__i. We’ll call number n the size or the length of permutation p1,  p2,  …,  p__n. The decreasing coefficient of permutation p1, p2, …, p__n is the number of such i (1 ≤ i < n), that p__i > p__i + 1. You have numbers n and k. Your task is to print the permutation of length n with decreasing coefficient k.

Input

The single line contains two space-separated integers: n, k (1 ≤ n ≤ 105, 0 ≤ k < n) — the permutation length and the decreasing coefficient.

Output

In a single line print n space-separated integers: p1, p2, …, p__n — the permutation of length n with decreasing coefficient k. If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.

Sample test(s)

input

5 2

output

1 5 2 4 3

input

3 0

output

1 2 3

input

3 2

output

3 2 1

 

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;


int main()
{
    int n,k;
    cin>>n>>k;
    cout<<(k+1);
    for(int i=k;i>0;i--)
      cout<<" "<<i;
    for(int i=k+2;i<=n;i++)
      cout<<" "<<i;
    cout<<endl;
    return 0;
}

Comments